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Abstract

We characterize the outcome of majority voting for single—peaked
preferences on median spaces. This large class of preferences covers a
variety of multi—-dimensional policy spaces including products of lines
(e.g. grids), trees, and hypercubes. Our main result is the following: If
a Condorcet winner (i.e. a winner in pairwise majority voting) exists,
then it coincides with the appropriately defined median (“the median
voter”). This result generalizes previous findings which are either re-
stricted to a one—dimensional policy space or to the assumption that
any two voters with the same preference peak must have identical pref-
erences. The result applies to models of spatial competition between
two political candidates. A bridge to the graph—theoretic literature is
built.
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1 Introduction

Majority voting is one of the predominant voting methods. Accordingly,
many results contribute to our understanding of the properties and limita-
tions of this voting rule. A groundbreaking contribution on this topic is due
to Duncan Black who shows the following:

If preferences are single-peaked (on a line), then the median
voter’s favorite alternative wins in majority voting against any
other alternative, i.e. it is a Condorcet winner (Black 1948).

This result is often referred to as the median voter theorem (e.g. Congleton
2002). It is not only a statement about the existence of a Condorcet winner,
but also a characterization of it: the Condorcet winner coincides with the
preference peak of the median voter.

Since the domain of single—peaked preferences on a line is quite narrow,
it is natural to ask to which extent this assumption can be relaxed. This
paper is devoted to address this question.

From the literature it is known that the existence of a Condorcet win-
ner can be extended to single-peaked preferences on tree graphs (Demange
1982). For the characterization of Condorcet winners there are contributions
in the field of location theory: For a special class of preferences, Wendell and
McKelvey (1981) show that on tree graphs Condorcet winners coincide with
the appropriately defined median; Bandelt and Barthélémy (1984) extend
this result to so—called cube—free median graphs. Those results apply to in-
teresting multi—dimensional policy spaces. However, they assume that any
two voters with the same preference peak have identical preferences. Nehring
and Puppe (2007b) have characterized the class of generalized single-peaked
preferences on median spaces which subsumes the assumptions of the afore-
mentioned literature as special cases. In this paper we study the outcome
of majority voting for this large class of preferences. While the existence
of a Condorcet Winner cannot be guaranteed, the characterization given by
Black (1948) extends: If there is a Condorcet winner, then it coincides the
appropriately defined median (“the median voter”).

In their seminal contribution Nehring and Puppe (2007b) discuss single—
peaked preferences on median spaces and show that this domain allows for
preference aggregation that is neither manipulable nor dictatorial. While,
their arguments involve majority voting on (political) issues, they remain
silent about majority voting on the alternatives (and thus on Condorcet
winners). By using the framework and tools of Nehring and Puppe (2007b)
we can directly derive our main result, which is a characterization of the
Condorcet winners. Single—peaked preferences have a long tradition in the
literature such that their properties and applications are well established
(cf. Black 1948, Moulin 1980, Moulin 1984, Demange 1982, Ballester and
Haeringer 2011).



Independently of this work Demange (2011) has developed some ideas
quite similar to the ones presented here. She introduces a notably different
set—up, in which a median graph represents the relation of the different
preference orderings in a profile. Within this set—up a strong conclusion can
be drawn: For strict preferences, the median preference ordering represents
the majority relation. While the framework of Demange (2011) is very
flexible in principle, it becomes restrictive when one graph is fixed. For
example, consider a tree graph with k nodes as a model of a policy space.
Within this model there are only k feasible preferences orderings. This is in
stark contrast with single—peaked preferences, for which there are at least
2F=1 strict preference orderings on the same policy space.

To demonstrate the implications of our main result we consider a model
of political competition that follows the tradition of Hotelling (1929) and
Downs (1957). The policy space in our model is a median space. Thus,
it contains the classic example of a line and the well-studied examples of
trees as special cases, but also covers other examples, e.g. grids. Moreover,
with the assumption of single-peaked preferences, the model does not require
that preferences of two voters with the same peak are identical—a ubiquitous
feature of other models on spatial competition (see Eiselt and Laporte (1989)
for a survey of such models). Based on our characterization of the Condorcet
winner, the following result is derived: If there is a Nash equilibrium between
two Downsian (vote—maximizing) candidates, then it must be such that both
candidates choose the appropriately defined median. Moreover, we show
that this result is not restricted to Downsian candidates. Assuming that
politicians are reformists, i.e. they care about the winning policy (rather
than about being the winner), this result still holds if the preferences of the
two candidates are “sufficiently heterogeneous.”

We will proceed as follows: Section [2] introduces the set—up. Section
states the main result. Section [d] presents an application of the result. Sec-
tion [5] embeds the result into the graph—theoretic literature. Section [6] con-
cludes.

2 Set—up

Let X = {a,b,c,...} be a finite set of alternatives (e.g. social states, policies,
political positions) of size | X| > 3. Let N = {1,2,...,n} be a finite set of
voters. The voters are endowed with (complete and transitive) preferences
on the set X. Let »=:= (>;);en denote a profile of such preferences where
x »=; y (r =; y) denotes that voter i weakly (strictly) prefers x over y.
Given a preference profile > a Condorcet winner is an alternative that wins
in majority voting against any other alternative. More precisely, = is a
Condorcet winner if Vy € X, it holds that #{i € N |z =; y} > #{i € N |



Y i l’}H

In order to define the relevant domain of preferences, we define prop-
erty spaces and generalized single—peakedness following Nehring and Puppe
(2007b). A set of basic (binary) properties H is extensionally defined via
the alternatives: H C 2%, where H € H stands for a property possessed
by exactly all alternatives € H. A pair (X,H) is called a property space
if three conditions are satisfied: (a) properties H € H are non—empty; (b)
for each property H € H, the complement, H¢ := X \ H, is also an element
of H; and (c) for each pair of alternatives x # y there is a property that
separates them in the sense that z € H and y ¢ H. A pair (H, H®) is an
issue.

A natural relation for a property space is to say that y is between x and
z if it shares all of their common properties.

Definition 1 (Betweenness) Let (X,H) be a property space. Define
Ty(C X x X x X) as follows: Vr,y,z € X

(x,y,2) €Ty <= VHeH :{z,2} CH =yecH|.

By definition (z,z,y) € Ty for any x, y. We will consider a special class
of property spaces.

Definition 2 (Median Space) A property space (X,H) is a median space
if for all x,y,z € X, there exists a unique alternative m € X such that

{(.7}, m, y)v (:Evmv Z), (yamv z)} - T’H'

Median spaces have several desirable properties (cf. Van de Vel 1993), some
of which we are going to exploitﬂ A segment is the set of alternatives be-
tween two alternatives: [z,y] :={z € X : (x,z,y) € Tx}. Two alternatives
x # y are neighbors if [x,y] = {x,y}. Let N(x) denote the set of neighbors
of alternative z. In a median space any two alternatives x, y are connected
via a sequence of neighbors.

The central assumption on preferences will be that they are single—
peaked with respect to a given median space.

Definition 3 (Single—peakedness) A profile of preferences = (on X ) is
single-peaked on the property space (X, H) if any voter’s preferences are
single—peaked w.r.t. to the betweenness relation Ty . That is: for eachi € N,
there exists i € X such that

Vy#£zeX, (2],y,2) €Ty =y =2

1Sometimes slightly weaker or slightly stronger notions are considered (cf., e.g., Bandelt
1985).

2In particular, for any median space there is a graph (X, E) that represents it in the
sense that (z,y,z) € Ty if and only if y lies on a shortest path between x and z.



For a characterization and an excellent discussion of single—peaked pref-
erences (on median spaces) we refer the reader, again, to Nehring and Puppe
(2007Db).

3 Characterization of the Condorcet winner

For single—peaked preferences on a line, the “median voter,” is the alterna-
tive for which it holds that neither to the “left” nor to the “right” there
are more than 50 percent of the voters’ preference peaks. Similarly, we
define the median alternative of a property spaceE| For a profile = of single—
peaked preferences on (X, ) and a property H € H, let the property weight
w(H) = #{i € N | zf € H}, i.e. the number of voters whose peak satis-
fies property H. Observe that for each issue, we have w(H) + w(H¢) = n.
The set of median alternatives is then defined as the alternatives that only
possess “majority properties,” i.e.

H.

OHeHw(H)>2

If a profile of preferences is single—peaked on a median space, then a
median alternative always exists (Nehring and Puppe 2007b). To ease the
exposition, let us assume that the profile > is non—degenerate on (X, H),
i.e. there is no property H such that w(H) = § = w(H°), e.g. by assuming
that n is odd. Then the median alternative is unique.

The following example illustrates the main definitions and shows that
the median alternative need not be a Condorcet winner.

Example 1 Let X = {a,b,c,d} and N = {1,2,3} with the following strict
preference orders =1= (a,b,c,d), == (b,d,a,c), =3= (¢,d,a,b). This pro-
file of preferences is single—peaked on the property space H = {Down =
{a,b},Up = {c,d}, Left = {a,c}, Right = {b,d}} (see Figure[I)). More-
over, this is a median space (since for any triple of alternatives one of the
alternatives is between the two others and hence between any pair in the
triple). The property weights are w(Down) = 2, w(Up) = 1, w(Left) = 2,
and w(Right) = 1. The median alternative is thus Left N Down = a. We
observe that alternative a is not a Condorcet winner because d would defeat
a by two votes over oneﬁ Note that in this example no Condorcet winner
exists, as b and ¢ are defeated by a; and d is defeated by b and c.

Example [I] shows that the classic characterization of the Condorcet win-
ner does not extend to median spaces in the sense that the median alternative

3We refer to the median alternative, not the median voter, because in this framework
there need not be any voter with preference peak equal to median alternative.

“By definition @ would win a majority voting on the issues (Nehring and Puppe 2007b),
but not majority voting on the alternatives.



Figure 1: A median space with four alternatives. If there is one preference
peak on each alternative except d, then a is the median alternative.
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need not be a Condorcet winner. However, since in Example[I]no Condorcet
winner exists, one might still conjecture that the median alternative char-
acterizes the Condorcet winner in case they both exist. Prop. 1 shows that
this is, indeed, the case on median spaces.

Proposition 1 (Characterization) Let = be single-peaked and non—degenerate
on a median space (X, H). If there exists a Condorcet winner, then it coin-
cides with the median alternative.

Proof. Let > be as above and let ¢ designate the median alternative.
Recall that for any H € H, if w(H) > %, then ¢ € H. Take an arbitrary
x € X N {q}. We will show that x cannot be a Condorcet winner.

1. [z,q] N N(z) # {0} because a median space is connected via pairs of
neighbors.

2. Let y € [x,q] N N(z). In median spaces neighbors differ in exactly one
issue (Lemma B.3 in Nehring and Puppe (2007b)). Let (H, H¢) be the
issue that separates z from y, with x € H, and y € H®.

3. Vz € H we have (z,y,x) € Tj. This is because any property that
is shared by z and z is also shared by y (since x and y only differ
with respect to (H, H¢)). Thus, single-peakedness implies Vi € N s.t.
x; € H¢ that y »; x.

4. q € H¢ because (q,y, ) € Ty (by definition of y). Thus, w(H¢) > § >
w(H) (by definition of g). Thus, y defeats x (in the sense that strictly
more voters vote for y against x).

5. We conclude that z(# ¢) cannot be a Condorcet winner. If there is a
Condorcet winner, then it must be q.



We have shown that any alternative that is not the median is defeated
in majority voting by some of its neighbors. For that purpose, we use a
neighbor that is between the alternative and the median alternative. The
condition that (X, H) is a median space is necessary for this result. If pref-
erences are single—peaked on a non—median space, then a median alternative
(as defined here) need not exist and even if it does, the median alternative
and the Condorcet winner do not coincide, in generall’] To illustrate the
importance of this result, we now consider its implications for a model of
political competition.

4 Application to political competition

Consider two political candidates A and B who are able to propose a political
position. Formally, a strategy for each candidate k € {A, B} is to pick
an alternative s* € S¥ = X. The strategy space is S = X2. Given a
strategy profile s € S, each voter’s preferences over the alternatives X induce
preferences over the candidates A, B. Fixing a preference profile = let the
outcome rule ¢ : S — R? keep track of how many voters prefer s over
sB and vice versa, where indifferent voters are counted with weight % in
both entries ¢ (s) and ¢ (s) of the vector ¢(s). Let p(s) be the winning
alternative, i.e. the strategy of the candidate with a majority of voters—
more precisely, p(s) = s? if and only if ¢4 (s) > (bB(s)ﬁ

For the payoffs of the candidates we consider two different assumptions.
If the candidates want to maximize their number of votes, i.e.

*(s) = T*((s))

for some increasing function IT*, we will call them Downsianm 1% need
not be strictly increasing; however, we assume that IT*(2 — ) < II*(%) <
IT*(% + €) for any € > 0. Alternatively, let a reformist be a candidate who
is not concerned about winning the election, but about p(s), the political
position that wins the election, (because this determines the policy that
is finally implemented). So, we here assume that the candidates them-
selves are endowed with preferences such as voters areﬁ Let >=F stand

5The latter point will be illustrated in Example

5For convenience, we let A be the winning candidate in case of a tie. If s* = s”, then
this convention does not matter.

"This modeling approach was made prominent by Downs (1957) who writes: “political
parties in a democracy formulate policy strictly as a means of gaining votes. They do
not seek to gain office in order to carry out certain preconceived policies or to serve
any particular interest groups; rather they formulate policies and serve interest groups in
order to gain office.” The Downsian approach has been critized by Roemer (2001), among
others.

8This idea is similar to the “citizen—candidates” introduced in Osborne and Slivinski
(1996).



for the preferences of candidate k € {A, B} on the set X. A reformist k
ranks strategy profiles in the following way: s is preferred to s’ if and only
if p(s) =* p(s'). Both assumptions constitute a normal-form game: One
for Downsian candidates I'Z = ({4, B}, S, (74, 77)) and one for reformists
'z = {{4,B},S,(=4,=5)}. The games are set-up simultaneously, while
sequential moves would not change the results.

4.1 Downsian candidates

It follows from the definitions that in a game of Downsian candidates deter-
mining the winner for some strategy profile coincides with the outcome of
majority voting on the two alternatives s and s®. Thus, a strategy profile
is a Nash equilibrium if and only if strategies are Condorcet winners. This
leads to the following corollary of Prop. 1, where N E(I") denotes the set of
Nash equilibria of a game I'.

Corollary 1 (Downsian candidates) Let = be single-peaked and non—
degenerate on a median space (X,H) with median q. Let I'= be a game of
two Downsian candidates. Then

(s1,sP) e NET™) = s4 =B =¢. (1)

If an equilibrium exists, then it is such that both candidates choose the
median alternative. This result extends the classic observation of minimal
differentiation at the median (Hotelling 1929) to single-peaked preferences
on median spaces. It might seem that this result is fully driven by the
assumption of Downsian candidates. However, the Nash equilibria for re-
formists have similar properties, as we will show next.

4.2 Reformists

Consider two reformists A, B who have single—peaked preferences on a prop-
erty space H with median alternative q. We say that preferences of the re-
formists are sufficiently heterogeneous if it holds that (z2,q,28) € Ty. This
is interpreted as having the preference peak located in a different part of the
property spaceﬂ Another interpretation is that the preference peaks of the
candidates do not share a property that is only supported by a minority of
voters. Indeed, by definition of betweenness (z2, ¢, 28) € Ty if and only if it
holds that [{z2,28}C H = ¢ € H], which implies w(H) > 2. The following
result shows that for sufficiently heterogeneous reformists, the outcome of
political competition is the median alternative.

90ne could argue that if the opponent has very similar preferences, a reformist’s in-
centive to run for election might just not be strong enough.



Proposition 2 (Reformists) Suppose = is single—peaked and non—degenerate
on a median space (X, H) and there exists a Condorcet winner. Let q desig-
nate the median alternative (and the Condorcet winner). Let I'= be a game
of two reformists, where (=4, =) is single-peaked on (X,H). If the candi-
dates’ preferences are sufficiently heterogeneous, i.c. (x4, q,z8) € Ty, then
(i) (¢,q9) € NE(TZ) and (i) s* € NE(I'Z) = p(s*) = q.

Proof. (i) Since ¢ is a Condorcet winner (by Prop. , p(q,s*) = q for
any s* with k € {A, B}. Thus, #s* that is an improvement for k. Thus,
(¢,9) € NE(I'=).

(ii) We show that if s is such that p(s) # ¢, then s ¢ NE(I'Z).

Let p(s) # q, w.lo.g. let p(s) = s Let Y := [2B, s4] N g, s]. Note first
that s4 € Y.

Case 1: Y = {s}. Since (X,H) is a median space, there exists an
alternative between the triple ¢, s, zB. Thus, (¢, s4,28) € Ty. Sufficient
heterogeneity means that (z2,q,258) € Ty. Therefore, (22, q, s*) € Ty.

Single-peakedness then implies that ¢ =4 s4 = p(s). However, for (any)
sB it holds that p(q, sB) = ¢ because ¢ is a Condorcet winner (by Prop. [1)).
Therefore, s = ¢ is an improving deviation for candidate A.

Case 2 YV 2 {s4}, ie. Im € Y st. m # st [m, s N N(s?) # 0
because in a median space any two alternatives are connected via a sequence
of neighbors. Let y € [m, s4] N N(s4). Because m € Y and (m, y, s4) € Ty,
it holds that y € Y. Thus, (22, y, s4) € Ty, implying that y =7 s4 = p(s).
Moreover, s4 and y differ with respect to exactly one issue—say y € H, s €
H¢—since this holds true for any pair of neighbors. Therefore, Vz € H we
have (z, vy, sA) € Ty. Thus, singlepeakedness implies for a voter i, y >; s4 if
and only if 7 € H. This implies that p(s?,y) = y because H® is a majority
property (indeed, ¢ € H means that w(H) > w(H€) by construction of g).
Therefore, sB’ =y is an improving deviation for candidate B. m

Prop. 2] establishes that if a Condorcet winner exists and it lies between
the two reformists’ peaks, then (i) we have a Nash equilibrium with both
candidates choosing the median alternative and (ii) in any Nash equilibrium
the winning alternative is the median alternative. For the first part (i) the
assumption of heterogeneous preferences is not necessary, but it is necessary

for the second part. Consider z2 = 28 # ¢, which is a special case of a
violation of sufficient heterogeneity. Then s4 = s® = 22 is also a Nash

equilibrium (because this outcome is payoff-maximal for both reformists).
Generally, we have a multitude of Nash equilibria with several different
winning alternatives if sufficient heterogeneity is violated. The assumption
that a Condorcet winner exists is necessary for both part (i) and part (ii)
of Prop. 2] Reconsider Example [I] where no Condorcet winner existed. Let
=4= (a,b,c,d) and =P= (b,d,a,c). Then s* = b(= zP) and s% = d



constitute the unique Nash equilibrium with p(s) = b # a, while a is the
median alternative.

The two results, Cor. [I] and Prop. [2, show that under weak assump-
tions the outcome of political competition on a median space is the median
alternativem Let us now compare our results with similar findings.

5 Relation to literature

To clarify the relation of our results to the existing literature, it is helpful
to reformulate our model in graph—theoretic terms.

5.1 Median graphs and Weber points

Let G = (X, E) be a graph, where the nodes are identified with the alter-
natives X, and E is the set of (undirected, unweighted) edges. We write
xy € E for an edge linking nodes x € X and y € X. The (geodesic) distance
d(z,y) of two nodes z, y is the number of edges in a shortest path between
themﬂ A node y is graphicly between two nodes x and z if y belongs to a
shortest path between x and z.

Definition 4 (Graphic Betweenness) Let (X, E) be a graph. Define Tg(C
X x X x X) as follows: Vx,y,z € X

(x,y,2) € Tp <= d(z,2) = d(x,y) + d(z, z).

If a graph (X, F) satisfies a separability condition, then there is a prop-
erty space (X, H) whose betweenness relation (cf. Def. [1)) coincides with the
graphic betweenness relation, i.e. Ty = Tr (Nehring and Puppe 2007b). On
the other hand, for a sizable class of property spaces, which contains all
median property spaces, there exists a corresponding graph that represents
it in that sense. Thus, for median property spaces there always exists a
graph representation in the sense that (z,y, z) € Ty if and only if y lies on
a shortest path between z and z[T]

10 An interesting variation of the two games I'” and I'” is to consider the competition
of one Downsian candidate and one reformist. It turns out that, similar to the violation
of sufficient heterogeneity between reformists, both candidates choosing the Condorcet
winner is a Nash equilibrium, but generically there are other Nash equilibria with different
outcomes.

A path from x to y is a sequence of distinct nodes (x1,...,x7) such that 1 = z,
zr =y, and x4x441 € E for all t € {1,...,T —1}. We focus on graphs that are connected,
i.e. there exists a path between any pair of nodes, and we define d(z,z) = 0 for any node
x and any graph.

12Ty particular, these median graphs satisfy that for any triple of nodes ,y,z € X,
there is exactly one node m, which is graphicly between each pair of the triple. Median
graphs are well-studied objects and contain lines, trees, products of lines (grids), and
hypercubes, as special cases (Van de Vel 1993).

10



We can now reconsider voters N with preferences on the alternatives
X. The notion of single—peaked preferences on a graph is readily defined by
switching the notion of betweenness in Def. [3| to graphic betweenness. Thus,
a profile of preferences > is single-peaked on a graph (X, F) if for every voter
i there exists a favorite node x such that Vy # z € X, (z},y, 2) € Tp implies
y =i z. This means that any alternative y (including y = z) is strictly pre-
ferred over another alternative z that lies on a shortest path from z; to ZE
For median graphs, the framework of single-peaked preferences on graphs
and the framework of single-peaked preferences on the corresponding prop-
erty space can be used interchangeably since T = Tg. Thereby, median
alternatives translate into Weber points. For a graph (X, F) and a profile
of peaks (z})ien a Weber point (or just “median” of the graph) is a node
x that minimizes the distances to all peaks, i.e. argmingcx > ;c v d(z, x7).
We can now neatly embed our results into the graph—theoretic framework
and compare them with previous findings.

5.2 Results for distance—based preferences

In the literature on location theory, there are contributions to majority
voting on graphs (cf. Hansen, Thisse, and Wendell (1986) for a bridge into
this literature). However, virtually all of them narrow their interest to a
specific class of preferences, which we call distance-based: A voter is assumed
to cast her vote for the candidate that is closest to her. More precisely,
preferences = are distance—based on a graph (X, E) if for any voter i there
is a peak x} and it holds that x >; y if and only if d(z},z) < d(z,y).
A profile of distance-based preferences is a special case of single-peaked
preferences on the same graph@

For distance-based preferences a Condorcet winner is a node that is
closer to more peaks than any node it is compared with—a so—called plu-
rality point. For this type of Condorcet winners existence and characteri-
zation results can be found. Wendell and McKelvey (1981) show that on a
tree graph, i.e. connected graphs without circles, Condorcet winners (plu-
rality points) always exist and coincide with the Weber points. Bandelt
and Barthélémy (1984) extend this result to median graphs that do not
contain three-dimensional hypercubes (what they call “cube-free” median
graphs). In that light our characterization of Condorcet winners as median
alternatives (Prop. is not surprising (because median alternatives cor-
respond to Weber points). Also Cor. [1| resembles existing statements—in
particular, a corresponding result holds for a model of spatial competition

13The restrictiveness of the assumption of single-peakedness depends on the graph struc-
ture, e.g. for the line graph we have the standard notion of single-peakedness, while for
the complete graph, we obtain the unrestricted domain (Nehring and Puppe 2007b).

14 Thus, fixing a graph and a distribution of preference peaks, there are many profiles
of single—peaked preferences, while only one of them is distance—based.
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on tree graphs (Hansen, Thisse, and Wendell 1986). However, it is impor-
tant to note that those former results are only established for the special
case of distance-based preferences. The assumption of distance—basedness
is very strong for two reasons: (a) it imposes a symmetry requirement for
the preference of each voter; (b) it imposes homogeneity of preferences for
all voters who share the same peak. The symmetry requirement (a) can
be relaxed with the introduction of varying edge-lengths (e.g. Wendell and
McKelvey 1981, Bandelt 1985). The homogeneity requirement (b), however,
is inherent in the assumption of distance—based preferences: Any distance
between two alternatives is valued equally by all voters. Thus, for each graph
(X, E) there are only | X| possible distance—based preference orderings—one
for each node of the graph—, while single-peaked preferences are much more
general than this.

5.3 Results for single—peaked preferences

In graph—theoretic terms, the classic median voter theorem due to Black
(1948) shows that for single—peaked preferences on a line graph a Con-
dorcet winner exists and coincides with the Weber point. The guarantee
of existence can be extended to single—peaked preferences on tree graphs
(Demange 1982). This is, however, the largest class of graphs for which
single—peaked preferences always admit a Condorcet winner.

Proposition 3 (Existence) A graph (X, E) guarantees existence of a Con-
dorcet winner for any profile of single—peaked preferences if and only if it is
a tree.

The proof of Prop. [3]is relegated to an appendix. The “if part” is implied
by basic properties of trees; the “only if” part applies the idea of Example
to all possible cases of graphs that are not trees. Note that the lack of a
guarantee for existence does not imply that the existence of a Condorcet
winner is unlikely in some probabilistic senseH Prop. 1 has established
that the characterization of Condorcet winners holds for all median spaces.
Thus, in a median graph with a non—degenerate distribution of voters, there
is only one potential Condorcet winner, the Weber point. We finally show
by means of an example that this result does not hold for single—peaked
preferences on arbitrary graphs.

5Median graphs that are not trees might well admit a Condorcet winner for many
profiles of single-peaked preferences. For example, a Condorcet Winner did not exist for
the profile > given in Example [I] If we consider a change of preferences of voters 2 and
3 such that =5= (b,a,d,c), =5= (c,a,d,b), i.e. these voters now prefer a over d, then
the Weber point, alternative a, becomes a Condorcet winner. Other nodes can never be
Condorcet winners for single-peaked preferences on this graph (by Prop. [1).
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Example 2 Let X = {a,b,c,d} and E = {ab,bd,dc,ca,ad} (see Figure @)
This is not a median graph, e.g. for the triple a,b,d there is no alterna-
tive that is graphicly between each pair of the triple. Let N = {1,2,3}
be three voters with the following strict preference orders =1= (a,d,b,c),
=o= (b,d,a,c), =3= (c,d,a,b). The preferences in Example @ differ from
those in Fxample |1 only with respect to voter 1. This profile of preferences
is single—peaked on the graph (X, E) but it would not be single-peaked on the
graph of Example |1}, i.e. (X, E\ {ad}).

Alternative a is again the Weber point (since its distance to all peaks is
two, while this number is three for all other nodes). However, alternative
d is the Condorcet winner. Thus, the characterization that any Condorcet
winner must be a Weber point does not hold for this graph.

Figure 2: Single—peaked preferences on a graph which is not a median graph.
Alternative a is the Weber point, while alternative d is the Condorcet winner.

@ @

6 Concluding remarks

This paper has analyzed the conditions under which the outcome of majority
voting can be characterized by the median alternative—the statement that
is also referred to as the median voter theorem (e.g. Congleton 2002). Classi-
cally, it is known to hold for single-peaked preferences on a line (Black 1948).
But also, for distance—based preferences on some median graphs, which con-
tain lines, trees, and grids as special cases (Bandelt and Barthélémy 1984).
By showing that the result extends to single—peaked preferences on median
spaces (Prop. (1)), we generalize these previous findings. This analysis reveals
that potentially critical assumptions are not driving the result. The charac-
terization of the Condorcet winner is neither restricted to one—dimensional
policy spaces (Black 1948); nor to preferences that require homogeneity of
voters who share the same preference peak (Bandelt and Barthélémy 1984).

Applying our main result to a model of political competition on median
spaces leads to the following classic observation: In equilibrium, two political
candidates choose the median alternative (Cor. |1/ and Prop. . However, it
should be kept in mind that Nash equilibria need not exist in this general

13



set—up (cf. Example . Their existence is guaranteed only for tree graphs
(Prop. |3)), i.e. one—dimensional median spaces according to the classification
of Nehring and Puppe (2007a).

The reformulation of single—peaked preferences on property spaces to
single—peaked preferences on graphs builds a bridge into the literature of
location theory and of spatial competition. Models of competitive location
choices on graphs, cf. Eiselt and Laporte (1989), can be directly considered
as instances of the game I'” introduced in Section |4, It is crucial to note
that in this literature the profile of preferences > is distance—based. This is
a natural assumption if the graph represents geographic locations, since long
(short) distances imply high (low) transportation costs for any agent. If the
graph represents a policy space, then this assumption is highly questionable:
two voters with the same moderate political position might well differ in their
ordering of left—wing and right—wing extremists. However, our results show
that the two player results on median spaces are robust in the sense that
they do not rely on the assumption of distance—basedness.

Results for more than two players are also established for distance—based
preferences only (e.g. Eaton and Lipsey 1975, Eiselt and Laporte 1993).
Thus, an interesting open problem is the characterization of Nash equilibria
between several players when voters’ preferences are single—peaked on a
graph.

APPENDIX: PROOF OF PROP. 3

Proposition 3 (Existence) A graph (X, E) guarantees existence of a Con-
dorcet winner for any profile of single—peaked preferences if and only if it is
a tree.

Proof. We have to prove two directions.

IF Suppose > is a profile of single-peaked preferences on a tree graph
(X, E). Let g be a Weber point, i.e. ¢ € argmingex > ;cn d(m,xf)m
Consider any alternative x # q. We will show that x cannot be pre-
ferred over ¢ by a majority of voters.

Since (X, E) is a tree graph, there is a unique path between ¢ and x.
Let N(q) :={y € X | qy € E}, i.e. the set of graphic neighbors of
node g. Let y be the neighbor of ¢ that lies graphicly between ¢ and
x, i.e. y € N(q) such that (x,y,q) € Tg. Since trees are connected
without circles, we have for any node z, either d(z,y) < d(z,q) or
d(z,q) < d(z,y). A well-known result on tree graphs is that for a
profile of peaks (z});eny a Weber point ¢ satisfies Yy € N(q), #{i €
N | d(z},q) < d(zj,y)} > 5 (cf., e.g., Bandelt and Barthélémy 1984).

16 A Weber point certainly exists but need not be unique.
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Thus, for at least § voters we have d(z},q) < d(z,y), which means
that (z},q,x) € Tk such that single-peakedness implies ¢ >; .

ONLY IF For any graph that is not a tree, we will provide a single-peaked pref-
erence profile of three voters such that there is no Condorcet winner.
Trees are connected and cyclic. Recall that a circle (or cycle) K is a
sequence of K (> 3) distinct nodes (z1, ..., zx) such that xpzr € F
forall k € {1,..., K —1} and zxx; € E. We first consider unconnected
graphs (case 1), then connected graphs where the smallest circle is of
odd length (case 2), and finally connected graphs where the smallest
circle is of even length (case 3).

case 1:

case 2:

(X, E) is unconnected. Then there are two nodes, say a and b,
which are not connected by any path. Let ¢ be some other node.
Note that none of the three nodes a, b, ¢ is graphicly between
the two others. Denote R := X \ {a,b,c}. Consider three voters
N with the following strict preference orderings: (a,b, ¢, o1(R)),
(b,c,a,02(R)), and (¢, a, b, o3(R)), where o; are orders on R which
do not violate single-peakedness. This profile of preferences is
single—peaked on (X, E). In majority voting any alternative in R
is strictly defeated, while among the three alternatives a, b, ¢, we
have the classic Condorcet cycle.

(X, E) is connected and the smallest circle is of odd length K.
If K = 3, denote a smallest circle by K = (a,b,c) and let R :=
X \ {a,b,c}. Consider three voters with preferences on a, b, ¢
exactly as in case 1 and the preferences on the rest R are added in
some single—peaked order ;. This profile of preferences is single—
peaked on (X, F). There is no Condorcet winner in majority
voting such as in case 1.

Now, let K > 5. Let us consider one smallest circle K and label it
as follows: K = (a, bl,bg,...b%,d, c%il,c%ﬂ,...,cl,) such
as illustrated in Figurepanel (a). Let Z denote the set of nodes
on the circle. Now, consider three voters with the following strict
preference orderings:

tl = ((l,bl,Cl,bQ,CQ,...7bK—l_l,CK—1_1,bK—1,d,O'1(X\Z))
2 2 2
EQ - (blvaa "’abﬂvda a, ci, C2, "'7CE_1502(X \ Z))
2 2
tg = (61,62,...,CK—l_l,d,a,bl,bz,...,bK—1,0'3(X\Z)),
2 2

where the alternatives in X \ Z are listed in some single-peaked
order o;. Since K is a smallest circle, there are no paths between
members of the circle which are shorter than the shortest path on
the circle. Thus, there is no node y € X \ Z such that (z,y, z) €
Tg for some xz, z € Z. Therefore, the profile > is single-peaked on
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(X, H). In majority voting alternative a defeats any alternative
except d. by defeats d and, finally, d defeats a.

case 3: (X, E) is connected and the smallest circle is of even length K.
Let us consider one smallest circle K and label it as follows:
K = (a, by, b, ...bg_l,d,c§_1,c%_2, ...,c1) such as illustrated in
Figure |3| panel (b). Let Z denote the set of nodes on the circle.
Any pair 2,y € Z has a shortest path using only nodes of the cir-
cle. However, there might be additional shortest paths for pairs
at the opposite sides of the circle, i.e. when d(z,y) = % LetY
denote the set of all nodes that belong to such a path but not to
the circle, i.e. Y :={y € X \ Z | 3z, 2z € Z with (z,y,2) € Tg},
and let R := X \ (ZUY). Now, consider three voters with the
following strict preference orderings:

tl - (aablaclab2a627-~-7bﬁflacﬁflaal(y)adaa-l(R))
2 2
=y = Y
—”2 (bla 627 7b%_17 d7a7 C1,C2, 70%_27 UQ(Y)v C%_la UQ(R))
ig = (Cl,CQ,...,Cﬁ_l,d,a,bl,bg,...,bK71_2,0'3(Y),bK—1_1,6'3(R)),
2 2 2

where o; (resp. ;) puts the alternatives in Y (resp. R) in some
single-peaked order. As it can be checked, this profile > is single—
peaked on (X, H )H In majority voting alternative a defeats any
alternative except d. by defeats d and, finally, d defeats a.
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Figure 3: A circle of length K, where K is odd in panel (a) and K is even
in panel (b).
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